
J. Fluid Mech. (2010), vol. 649, pp. 371–398. c© Cambridge University Press 2010

doi:10.1017/S0022112009993508

371

An experimental study of laminar displacement
flows in narrow vertical eccentric annuli

S. MALEKMOHAMMADI1, M. CARRASCO-TEJA2,
S. STOREY1, I. A. FRIGAARD1,2† AND D. M. MARTINEZ3

1Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane,
Vancouver, BC, Canada V6T 1Z4

2Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver,
BC, Canada V6T 1Z2

3Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall,
Vancouver, BC, Canada V6T 1Z3

(Received 25 June 2009; revised 14 November 2009; accepted 16 November 2009)

We present an experimental study of slow laminar miscible displacement flows
in vertical narrow eccentric annuli. We demonstrate that for suitable choices of
viscosity ratio, density ratio and flow rate, we are able to find steady travelling wave
displacements along the length of the annulus, even when strongly eccentric. Small
eccentricity, increased viscosity ratio, increased density ratio and slower flow rates all
appear to favour a steady displacement for Newtonian fluids. Qualitatively similar
effects are found for non-Newtonian fluids, although the role of flow rate is less clear.
These results are largely in line with predictions of a Hele-Shaw style of displacement
model (Bittleston et al., J. Engng Math., vol. 43, 2002, pp. 229–253). The experiments
also reveal interesting phenomena caused largely by secondary flows and dispersion.
In the steady displacements, eccentricity drives a strong azimuthal counter-current
flow above/below the advancing interface. This advects displacing fluid to the wide
side of the annulus, where it focuses in the form of an advancing spike. On the narrow
side we have also observed a spike, but only in Newtonian fluid displacements. For
unsteady displacements, the azimuthal currents diminish as the interface elongates.
With a strong enough yield stress and with a large enough eccentricity, unyielded
fluid remains behind on the narrow side of the annulus.

1. Introduction
We present an experimental study of slow laminar miscible displacement flows

in vertical narrow eccentric annuli. The underlying motivation for the study comes
from the oilfield process of primary cementing, which we explain briefly below. The
objectives of our study are partly to provide a controlled set of experiments, suitable
for exploring the validity of mathematical models of the displacement flow, and
partly to consider displacements in parameter ranges having some overlap with field
conditions.

Primary cementing is described at length in the recent text by Nelson & Guillot
(2006). In this process a steel casing is cemented into a wellbore to ensure a tight
hydraulic seal with the outer rock formation. The annular space to be filled with
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Figure 1. Schematic of the primary cementing process, showing the various stages (left to
right) in cementing a new casing.

cement is initially full of drilling fluid (or other fluids), which must be removed
during the cement placement. The primary cementing process proceeds as follows
(see figure 1). A new section of the well is drilled. The drillpipe is removed from the
wellbore, leaving drilling mud inside the wellbore. A steel tube (casing or liner) is
inserted into the wellbore, typically leaving a gap of ≈2 cm between the outside of
the tube and the inside of the wellbore, i.e. the annulus. At certain points, centralizers
are fitted to the outside of the tube to prevent the heavy steel tubing from slumping
or sagging to the lower side of the wellbore. However, it is still very common that the
annulus is eccentric, especially in inclined wellbores. Once the tube is in place, with
drilling mud on the inside and outside, a sequence of fluids are circulated down the
inside of the tubing reaching the bottom of the hole and returning up the outside of
the annulus. Typically, a wash or spacer fluid is pumped first, followed by one or more
cement slurries. The rheologies and densities of the spacer and cement slurries can be
designed so as to aid in displacement of the annulus drilling mud. The fluid volumes
are designed so that the cement slurries fill the annular space to be cemented. Drilling
mud follows the final cement slurry to be pumped and the circulation is stopped with
a few metres of cement at the bottom of the inside of the casing (see final figure in
figure 1), and the cement is allowed to set. The final part of cement inside the tubing
is drilled out as the well proceeds.

From the fluid mechanics perspective, since the volumes of fluids pumped are
relatively large, so that successive interfaces are separated, it is reasonable to consider
alone the displacement flow between one pair of fluids. Equally, the geometry changes
slowly in the axial direction, relative to the scale of the annular gap or circumference,
so that consideration of a uniform annulus is also reasonable. Thus, we consider
displacement as a flow through a uniform eccentric annulus.

The fluids used in cementing and those that we study are both Newtonian and
non-Newtonian. In the latter case we focus mainly on fluids where the behaviour
is dominated by a nonlinear shear viscosity, i.e. shear-thinning and yield stress
effects. Rudimentary hydraulics-style studies of annular flows for this type of fluid
may be found in the technical literature of various industries, dating back to the
1960s or earlier. However, detailed experimental studies of this type of fluid flow
in annular geometries are more recent. Probably the best known of these studies
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are those by Nouar and Lebouché (e.g. Nouar, Devienne & Lebouché 1987; Naimi,
Devienne & Lebouché 1990; Nouar, Desaubry & Zenaidi 1998), those by Nouri and
Whitelaw (e.g. Nouri, Umur & Whitelaw 1993; Nouri & Whitelaw 1994, 1997) and the
extensive studies of Escudier and coworkers (e.g. Escudier & Gouldson 1995; Escudier,
Gouldson & Jones 1995; Escudier et al. 2000; Escudier, Oliveira & Pinho 2002a).
These studies consider fluids similar to those we use here: carboxymethylcellulose
(CMC), Xanthan Gum, Carbopol, etc., and cover a wide range of eccentricities, aspect
ratios, inner-body rotation rates and Reynolds numbers. Detailed measurements of
velocity profiles have been made and in many cases have been compared favourably
with computational results. There are also numerous computational studies for
these flows and some analytical solutions. The reader is referred to Escudier et al.
(2002b) (which also contains an excellent and comprehensive bibliography) for an
overview of this area. Thus, the experimental study of a single generalized non-
Newtonian fluids, flowing in laminar regime through an annulus, is a mature
area.

In terms of eccentric annular displacement flows, the experimental literature is much
smaller. The first detailed study that we know of was carried out by Tehrani and
coworkers: Long (1991); Tehrani, Ferguson & Bittleston (1992); Tehrani, Bittleston &
Long (1993). These experiments were carried out in a narrow annulus (aspect
ratio: δ = 0.035) of 3 m in length, fully inclinable. Various flow rate and eccentricity
combinations were tested, using Xanthan as the representative non-Newtonian fluid.
The main measurement method consisted of adding a conductive tracer to one
fluid and measuring the fluid conductivity at eight azimuthal positions around the
annulus, close to the exit. The conductivity data was used to give the displacing fluid
concentration at the exit. This data was compared with model-based output, i.e. in
the form of a final displacement efficiency at the end of the experiment. The use
of conductivity has some advantages over visualization, in terms of objectivity and
the ability to use opaque fluids. On the other hand, the use of a single displacement
efficiency to characterize the flow has drawbacks in terms of generalizations to
longer annuli. Reasonable qualitative agreement was however found between model
predictions and experimental results (see Tehrani et al. 1992). A number of interesting
flow phenomena were also reported in these studies. Other than the studies by
Tehrani and coworkers, there have been only occasional experimental results reported
(e.g. Jakobsen et al. 1991; Vefring et al. 1997; Dutra et al. 2004; Nguyen et al. 2008).

Our initial interest in annular displacement flows came from revisiting the studies of
Tehrani and coworkers. A simple dimensionless analysis of this type of flow, between
two non-Newtonian fluids, revealed that as well as Reynolds number, buoyancy
number, Péclet number, density ratio, viscosity ratio, eccentricity, aspect ratio and
annular inclination, up to four additional dimensionless rheological parameters need
considering, i.e. between eight and 12 dimensionless parameters. Without some
reduction in parameter space, it was clear that it would be infeasible to study such
flows effectively, either experimentally or computationally. The focus chosen was to
look at the narrow gap (Hele-Shaw) limit in which inertial effects are negligible and at
the high-Péclet-number limit, that is, a limit which is commonly found in the industrial
setting. With this the parametric dependence is reduced to five to nine parameters,
which is still large for an experimental study. In place of the classical ‘displacement
efficiency’ approach it was decided to first try to understand the dynamics of the
displacement flows in this simpler regime, via mathematical modelling, and then
use more limited experimental studies to validate the dynamical understanding and
illuminate any major shortcomings.
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The modelling approach that we have used for these flows is outlined in
Bittleston, Ferguson & Frigaard (2002), although the underlying idea of using a
Hele-Shaw/porous media approach dates back to Martin, Latil & Vetter (1978) and
Tehrani et al. (1992). This model has been analysed in depth in the sequence of
papers Pelipenko & Frigaard (2004a,b,c), which focus principally at near vertical
wells. The dynamics are dominated by the existence (or not) of steady travelling wave
solutions, i.e. for certain parameter values the displacement front advects along the
annulus at the mean pumping speed. When this does not occur, the front tends to
advance faster on the wider side of the annulus and elongates into a finger. Where
yield stress fluids are concerned, as is the typical case industrially, it is possible for
the fluids to plug the narrow part of the annulus, bridging between inner and outer
walls. For limited parameter ranges (near concentric annuli) it is possible to construct
analytic solutions to the displacement problem, exhibiting the steady travelling wave
behaviour (see Pelipenko & Frigaard 2004a). These steady states are in fact found
computationally for a much wider range of parameters than those for which it is
possible to find analytical solutions (Pelipenko & Frigaard 2004b), and it is possible
to approximately predict steady and unsteady displacements using a lubrication-style
displacement model (see Pelipenko & Frigaard 2004c).

In all the above we have worked under the Hele-Shaw model assumptions (which
we outline more precisely in § 2.2). These assumptions and this style of modelling
are however strictly valid for single-phase flows. For multi-phase systems a variety
of phenomena can impact the validity of the model assumptions at the interface. In
the first place, under suitable conditions on the mobility ratio, it is known that local
instabilities arise, i.e. viscous fingering (see e.g. Homsy 1987). In the second place,
dispersive effects are always present in a miscible displacement. Thirdly, the local
velocity is always nearly three-dimensional at the interface.

The combination of the above three phenomena can be complex and their impact
on the validity of the Hele-Shaw approach is subtle. Regarding viscous fingering, for
the most part this is not a concern for the flows considered as we typically have
positive viscosity ratios. Dispersive effects are present in our flows, in particular due
to significant azimuthal current close to the interface, driven by annular eccentricity.
These effects will form a significant part of our study. We note however that the
experimental time scales considered are relatively short, meaning that we are very far
from diffusive dispersion regimes. Regarding three-dimensional effects at the interface,
these are unavoidable. As with dispersion, these effects are an inherent property of all
real flows and cannot be eliminated by strategies such as working with small aspect
ratios. Instead the key question is whether or not these local phenomena have an
impact on the global dynamics of the system or whether the effects remain local, as
is often the case. Zimmerman & Homsy (1991) found that the local details of the
concentration front close to the interface were relatively unimportant in comparison
to the bulk pressure gradients.

There is a growing literature on miscible displacements in pipes and channels.
Whilst relevant, here we have strong geometric effects on the base flow, so that direct
comparison with this literature is hard. Instead, we highlight within our results when
we have observed similar effects to those already published.

An outline of our paper is as follows. In § 2 following, we describe the experimental
set-up. The first sequence of results is given in § 3, where we classify the displacements
as either steady or unsteady, in each of our six series of experiments. Section 4
examines the significant role of dispersion and secondary flows in our experiments,
illustrating the various observed phenomena. We close with a discussion, comparing
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Figure 2. Schematic of the experimental set-up.

with model results and assessing the overall validity of the Hele-Shaw modelling
approach.

2. Experimental methodology
A schematic of the experimental set-up is given in figure 2. The annulus dimensions

are r̂o = 1.91 cm, r̂i =1.27 cm and a length of 188.3 cm. The outer pipe is constructed
from acrylic tubing with a wall thickness of 12.7 mm. The inner body is an aluminium
pipe with wall thickness of 1.58 mm. It is mounted such that the position of the inner
pipe can be adjusted relative to the fixed outer pipe to create the desired eccentricity.
Eccentricity is measured by depth gauges mounted on either end of the annulus. The
annulus is immersed in a tall tank with a square cross-section filled with glycerin to
reduce optical distortion.

The flow loop consists of a progressive cavity pump (PCP) supplying the annulus
with displacing fluid. The flow rate is controlled by a variable frequency drive. A
thermocouple is mounted inside the inlet pipe of the annulus. The flow rate is
measured with a Cole Parmer pilot-scale magnetic flowmeter (EM101-038) which
the manufacturer specifies as accurate to 2 %, the output of which was directed to
the control computer. The flowmeter’s accuracy was checked in a simple calibration
experiment by measuring the mass of fluid pumped over a fixed time interval.

To run a typical displacement experiment the upper section of the annulus is filled
initially with displaced fluid while the gate valve is closed. Then, the bottom section
of the annulus, below the gate valve, is filled with displacing fluid. A displacement
experiment starts by slowly opening the gate valve and pumping the displacing fluid,
dyed black, from the bottom of the annulus to the top (see figure 2). The fluids were
dyed with ordinary (Higgins Eternal) pen ink, at a concentration of 300 p.p.m.
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Figure 3. Schematic of the optical set-up.

Imaging of the interface occurred at two different axial positions, namely 300 mm
and 1000 mm above the gate valve. A digital camera images 270◦ of the annulus by
the use of a mirror (see figure 3). Each image thus consists of a reflected image from
the side of the annulus and a non-reflected image from the front. Images are captured
at a frame rate that depends on the flow rate, ranging from 10 Hz at high flow rates
to 4 Hz at slow flows. The images are captured in uncompressed 8 bit monochrome
format, with a signal to noise ratio of 50 dB. The two images are unwrapped via a
simple geometric transformation. The edges are located on the transformed images,
and then the two images are collocated and registered. Pixel values of the images
were recorded along the circumference at these two heights. Pixel values varied in
greyscale from 0 (white) to 255 (black), and a total of 130 pixels were located on
each circumferential line. Before starting any analysis, an initial background image is
subtracted from each image, to correct for local lighting variations. As the interface
passes each fixed height, the value of each pixel on the circumferential line increases
from zero until it reaches a maximum. This process at each pixel can be described by
a saturation curve in which darkness intensity is plotted against time. By normalizing
with the local maximum pixel value, the normalized darkness intensity varies from
0 to 1 as the interface passes. The saturation time, when an interface is regarded to
have passed a given position is the time at which the normalized darkness intensity
is equal to 0.95, i.e. because the interface is never completely sharp in a miscible
displacement.

2.1. Interface shape analysis

In an ideal case where the interface is a horizontal line all pixels are saturated
simultaneously. However in an eccentric annulus, a flat interface is rarely formed and
pixels are saturated at different times. By subtracting the saturation time measured
for pixel j at the upper (downstream) location from that at the lower (upstream)
location, we arrive at a residence time �t̂j , which is the time taken for the interface to
traverse between lower and upper positions at the azimuthal position corresponding
to pixel j .

On assuming a ‘piston-like’ displacement at the mean speed of the flow, say
ŵ∗ = Q̂/π(r̂2

o − r̂2
i ), the idealized mean residence time is denoted �t̂p:

�t̂p =
�ŷ

ŵ∗ , (2.1)
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Figure 4. Schematic of interface shape and residence time variations for: (a) steady
displacement (b) unsteady displacement. If all points lie on �t = 1, they move at exactly
the bulk mean velocity.

where �ŷ = 700 mm is the vertical distance between upper and lower measurement
locations. Throughout the paper we shall use the ‘hat’ notation, i.e. ·̂, to denote
variables that are dimensional. The piston-like residence time is used to scale the
individual residence times, resulting in

�tj =
�t̂j

�t̂p
, j = 1, 2, . . . , 130. (2.2)

In a steady displacement, where the interface travels in a steady manner, the
normalized �tj should give the same constant value for each pixel j (see figure 4a).
It should be noted that the interface itself does not need to be horizontal in order
for �tj to be constant. The interface can be any shape so long as it maintains that
shape during displacement.

In an unsteady displacement (see figure 4b), the fluid on the wide side flows
faster than the fluid on the narrow side. Thus, the interface stretches as the flow
progresses. Different pixels along the circumference have different residence times
and the distribution of �tj suggests the unsteadiness of the displacement. For an
objective measure of the unsteadiness we may consider the standard deviation of the
�tj distribution, say σ�t . A large standard deviation (relative to the mean of �tj )
suggests an unsteady displacement while a small standard deviation (relative to the
mean of �tj ) suggests a steady displacement.

2.2. Experimental design and process related issues

As explained in § 1 the objectives of our study were partly to provide a controlled set
of annular displacement experiments, suitable for exploring the validity of the Hele-
Shaw modelling approach adopted previously, and partly to consider displacements
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in parameter ranges having some overlap with field conditions. We therefore briefly
review the dimensionless parameters of relevance to the modelling approach and field
conditions. For further detail on the modelling approach the reader is referred to
Bittleston et al. (2002) or Pelipenko & Frigaard (2004c).

The main simplifications that we adopt, with respect to industrial conditions, are
to consider a single uniform section of the annulus, fix the orientation at vertical and
to consider only 2 fluids in our displacement. The fluid types that we consider are
shear-thinning and yield stress fluids, although half of the experiments are conducted
with Newtonian fluids. These fluids are characterized in the oilfield cementing industry
by rheological models such as the Herschel–Bulkley model (including the Bingham,
power law and Newtonian models as subcases). This model contains three parameters:
the yield stress τ̂k,Y , the consistency κ̂k and the (shear-thinning or) power law index
nk (where k = 1, 2 denotes the fluid). The fluid densities are denoted ρ̂k .

In order to follow the Hele-Shaw approach of Bittleston et al. (2002), we define the
aspect ratio of circumferential and radial length scales δ in the following way:

δ =
r̂o − r̂i

π(r̂o + r̂i)
. (2.3)

Azimuthal and axial distances are scaled with 0.5π(r̂o + r̂i), whereas radial distance
from the annular centreline is scaled with 0.5(r̂o − r̂i). For a velocity scale we take the
mean flow velocity ŵ∗:

ŵ∗ =
Q̂∗

π
(
r̂2
o − r̂2

i

) . (2.4)

Axial and azimuthal velocity components are scaled with ŵ∗, and radial velocity with

δŵ∗. A representative shear rate is ˆ̇γ
∗
= 2ŵ∗/(r̂o − r̂i), which is used for the viscous

stress scale τ̂ ∗:

τ̂ ∗ = max
k=1,2

[τ̂k,Y + κ̂k( ˆ̇γ
∗
)nk ]. (2.5)

The viscosity scale is μ̂∗ = τ̂ ∗/ ˆ̇γ
∗
, and finally, densities are scaled with the maximum

density: ρ̂∗ = maxk=1,2{ρ̂k}.
Primarily the Hele-Shaw approach relies on the neglect of terms in the Navier–

Stokes equations that are of O(δ) and O(δRe), where

Re =
0.5(r̂o − r̂i)ŵ

∗ρ̂∗

μ̂∗ (2.6)

is the Reynolds number. The field range for δ is typically in the range 0.01–0.1. Our
annular radii give δ = 0.064, which is in this range. We have also conducted a limited
number of experiments in a slightly larger aspect ratio annulus, δ = 0.084. Moving to
a much narrower annular gap presents problems in both cleaning of the apparatus
and in terms of controlling the uniformity when eccentric, i.e. small deflections of
the inner or outer wall become very significant. Regarding the Reynolds number,
this has a very wide range in field applications, ranging from near-creeping flows to
strongly turbulent flows. However, for very large Re flows the Hele-Shaw approach
is anyway not applicable, so here we focus mainly on experimental laminar flows in
the Reynolds number range of 0–10. This is restrictive from the industrial perspective
but does represent a limiting parameter regime that is easier to understand.

There are two development lengths to consider in our apparatus. Firstly, we have
a development length scale associated with the width of the annular gap. The time
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scale for viscous diffusion across the annular gap is

t̂v =
ρ̂∗(r̂o − r̂i)

2

4μ̂∗ (2.7)

and the length scale is thus: ŵ∗ t̂v � 0.5π(r̂o + r̂i) ≈ 5 cm, since we have δRe � 1 for
the flows considered. Secondly, we may consider development of the Hele-Shaw type
flow in the azimuthal-axial directions. The boundaries at the ends of the Hele-Shaw
cell (annulus) are fully mobile and there are no fixed boundaries in the azimuthal
direction to generate boundary layer flows. Therefore, we expect flow developments to
take place on the shortest length scale of the Hele-Shaw cell, i.e. the azimuthal length
scale: 0.5π(r̂o + r̂i). For steady displacements another development length relates the
length required for the front and rear of the interface to pass the entry point. At
the inflow, there is also a development from the initial shape of the interface at
the gate valve towards a steady state shape. Typical steady displacements we have
observed experimentally in vertical annuli do not have axial extensions greater than
the azimuthal length scale 0.5π(r̂o + r̂i). Thus, it appears that the choice of lower
observation point at 30 cm is reasonable.

Other than the Reynolds number, which does not appear in reduced models,
the main flow-controlling parameter is the dimensionless buoyancy number. b = (ρ2 −
ρ1)/St∗. Here St∗ is the Stokes number of the flow, defined in terms of the dimensional
parameters by

St∗ =
τ̂ ∗

0.5ρ̂∗ĝ(r̂o − r̂i)
. (2.8)

The Stokes number can vary in the range 0.1–100 in the field setting, but the
dimensionless density difference (ρ2 − ρ1) is also small. In terms of dimensional
quantities the buoyancy parameter b is defined by

b =
0.5[ρ̂2 − ρ̂1]ĝ(r̂o − r̂i)

τ̂ ∗ , (2.9)

which clearly reflects the balance between buoyant and viscous stresses. Typical sizes
of b may range from 0 to 10, and typically the displacing fluid is denser, meaning
b < 0. Intuitively, we expect that |b| � 1 indicates the dominance of buoyancy over
viscous effects.

With respect to the dimensionless geometric parameters in the flow, having fixed the
inclination at vertical, the only other geometric parameter is the eccentricity e, defined
as the distance between centres of the two cylinders, divided by the difference in radii.
Although in strongly inclined wells values of e close to 1 do occur, in vertical wells
this is rarer. A more common range would be e ∈ [0, 0.6], which we can adequately
cover. A practical difficulty with larger eccentricities (experimentally) is mentioned
earlier in the context of smaller δ, i.e. small imprecisions in the apparatus geometry
become significant with respect to the annular gap size, on the narrow side of the
annulus.

In the modelling approach that we seek to validate, apart from b and e all other
dimensionless parameters are rheological. For fluid k, the dimensionless rheological
parameters are defined in terms of their dimensional analogues by

κk =
κ̂k

(
ˆ̇γ

∗)nk

τ̂ ∗ , τk,Y =
τ̂k,Y

τ̂ ∗ . (2.10)
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In the case that the fluids are Newtonian, note that the consistency is simply the
viscosity.

In a field setting, power law indices in the range 0.3–1 are fairly commonplace,
effective viscosities when sheared are 1–2 orders of magnitude larger than water.
Yield stresses can range from 0 to 20 Pa. The Bingham number Bk = τk,Y /κk , gives
an indication of how plug-like the local velocity profile is, when viewed across the
annular gap. A typical range is 0–10. It is worth commenting that at large values of
Bingham number the flow is likely to become locally stationary on the narrow side
of the annulus.

2.3. Selection of fluids

Although ideally one would like to be able to select fluids to match given dimensionless
parameter ranges, in reality this is very difficult, and particularly as we wish to
work with transparent and relatively inelastic fluids. The easiest parameter to vary
experimentally between experiments is the flow rate. For Newtonian fluids, a change
in the flow rate affects only b. Therefore, we may select a given fluid pair with desired
viscosity ratio and fixed densities, then explore the space (e, b).

This was the approach adopted for the first three series of experiments, using
glycerol solutions as a Newtonian fluid. Glycerol solutions were prepared by diluting
pure glycerol with water. Density and viscosity of glycerol solutions are very sensitive
to water content and temperature. Fluid densities were measured with a hydrometer,
accurate to ±1 kgm−3. Viscosities of fluids were tested before each experiment to
check the self-consistency of experiments in each series.

For our non-Newtonian experiments Xanthan gum and Carbopol 940 were used.
These fluids are complex long-chained polymers and were mixed according to the
manufacturers’ methodology. Rheology measurements showed that the effect of dye
on the rheology of either fluid was insignificant. The rheological properties of each
solution were determined using a Bohlin C-VOR digital controlled shear stress-shear
rate rheometer. The temperature was fixed to be isothermal at a temperature of
approximately 23 ◦C. The Xanthan measurements were highly repeatable, with an
error of less than 2 % between successive measurements. The data were fitted to a
power law model:

τ̂ = κ̂ ˆ̇γ
n
, (2.11)

which is known to give a reasonable representation of the flow curve data, over a
restricted range of shear rates.

Carbopol 940 was more challenging to characterize. It was found to exhibit
thixotropic properties due to aging and polymer restructuring. In order to ‘reset’
the structure of the polymer between samples, all tests were subjected to a pre-shear
of 30 s in the rheometer before data acquisition. This greatly improved repeatability
especially at low shear rates. After pre-shearing, the stress values were acquired by
the rheometer for an increasing ramp of shear rates. The rheological parameters
of the fluids were determined by analysing the flowcurve data and fitting to a
Herschel–Bulkley model.

τ̂ = τ̂Y + κ̂ ˆ̇γ
n
. (2.12)

The yield stress was determined finding the shear stress value at the global maximum
of the viscosity. Once the yield stress was found, this value was subtracted from
the remaining data, which was then fitted to a power law curve. The error on the
parameter fitting is larger with Carbopol, particularly with regards to the yield stress,
which can have an error, in the worst case, in the range 20–50 % since the global
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Displacing fluid (1) Displaced fluid (2)

ρ̂1 κ̂1 ρ̂2 τ̂Y κ̂2

Series Fluid Additive (kgm−3) (Pa sn) n1 Fluid (kgm−3) (Pa) (Pa sn) n2

1 78 % Gly 0.4% Salt 1200 0.049 1 78 % Gly 1192 – 0.049 1
2 88 % Gly – 1234 0.15 1 78 % Gly 1192 – 0.049 1
3 98 % Gly – 1254 0.64 1 78 % Gly 1192 – 0.049 1
4 0.3 % Xan 30 % Sug 1118 1.45 0.38 0.38% Xan 1000 – 1.00 0.38
5 0.8 % Xan – 1000 3.6 0.3 0.1% Car 1000 2 2.2 0.3
6 0.3 % Xan 33 % Sug 1048 0.32 0.51 0.07% Car 1000 0.6 0.91 0.36

Table 1. Fluids and properties in the experimental series. The percentages in this case refer to
a wt/wt measure. A legend for the chemicals used is as follows: Salt is NaCl; Sug is sugar;
Gly is glycerin; Xan is Xanthan gum and Car is Carbopol-940.

maximum is often not well defined. This apparently large error in τ̂Y has a relatively
small impact on model usage for flowing fluids as the uncertainty occurs at very
small strain rates. Once the yield stress is fixed, the fitting error is below 3.5 % for
the consistency κ̂ and 4 % for the power law index n.

2.4. Experimental plan

We aimed to study the effects on the displacement flows of variations in the
dimensionless governing parameters of the Hele-Shaw model. Six series of experiments
with Newtonian and non-Newtonian fluids were performed. Each experimental series
corresponded to a fixed pair of fluids with the displacement performed at a range of
different eccentricities and flow rates. The flow rate ranges were selected to maintain
comparable ranges of |b| (between 0 and 6.3) for each series. The fluids used and
their physical properties are listed in table 1.

For the Newtonian–Newtonian displacements (series 1–3), the viscous stress scale
is unaffected by the flow rate, which acts only on the buoyancy number. Glycerol
solutions were used, at different concentrations in each series, to control the viscosity
ratio. For the non-Newtonian fluids, we attempted to match the power-law indices
of the two fluids (series 4 and 5). In this case the stress scale also changes with the
nth power of the flow rate. This maintains a constant ratio of κ1/κ2, in the case
of two power law fluids. Series 4 consisted of two different Xanthan solutions of
the same power law index, but with a density and consistency difference. In series
5 we have looked at displacing Carbopol with Xanthan in the absence of a density
difference (but with identical power law indices). Finally, series 6 considered displacing
Carbopol with Xanthan in the presence of a density difference. Table 2 summarizes
the experimental conditions for each series of experiments.

3. Experimental results
3.1. Illustrations of typical displacements

Before presenting parametric results from each series of experiments, we illustrate
typical experimental results in the cases when a displacement is steady or unsteady.
We commence by showing in figure 5 typical images from both a steady and unsteady
displacement. Front and side images are presented at a sequence of different times, at
lower and upper vertical positions. The first observation we make is that, although
miscible, the bulk of the two fluids remains separate and unmixed. The interface itself
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Series Flow rate (L min−1) e |b| κ1/κ2

1 0.17–0.72 0–0.5 0.9–3.7 1
2 0.17–0.72 0–0.5 1.5–6.3 3.1
3 0.17–0.72 0–0.5 0.5–2.2 13.1
4 0.17–0.72 0–0.5 1.2–2.2 1.45
5 0.17–0.72 0–0.5 0 1.6
6 0.10–2.16 0–0.5 0.7–1.4 0.37–0.46

Table 2. Experimental condition for the different series.

(a)
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Side

y = 300 mm y = 1000 mm y = 300 mm y = 1000 mm

Front Side Front Side Front Side Front
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118 s

116 s

114 s

112 s
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46 s

(b)

Figure 5. Examples of steady and unsteady displacements: (a) e =0.5, Q̂ =0.17 L min−1, fluid

properties from series 3; (b) e = 0.2, Q̂ = 0.34L min−1, fluid properties from series 1. In each
of (a) and (b) the left two columns of the figures shows successive time frames at the lower
(upstream) position, y = 300 mm (front and side views), whereas the last two columns show
images at the upper (downstream) vertical position, y = 1000 mm (front and side views). The
zero reference time is at the start of the first image.

is somewhat diffused and we can observe dispersive currents within the flow, but
there is no large-scale mixing in evidence. Qualitatively, the shape of the interface
in figure 5(a) translates axially while remaining constant, whereas that in figure 5(b)
elongates progressively. To see the elongation more clearly compare the slope of
the interface in the side views, at lower and upper positions. Due to background
lighting variations these images are obscured to the left of the side views, but once
the background light is subtracted, the darkness intensity data is much clearer.

To quantify more precisely this notion of steady/unsteady displacement and to
measure the amount of dispersion, we construct spatio-temporal plots at the upstream
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Figure 6. Spatio-temporal for the displacement of Figure 5(a): (a) upstream location;
(b) downstream location.
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Figure 7. Spatio-temporal for the displacement of Figure 5(b): (a) upstream location;
(b) downstream location.

and downstream locations, using the normalized darkness intensity. These are shown
in figures 6 and 7, for the experiments reported in figures 5(a) and 5(b) respectively.
The azimuthal distance shown corresponds to roughly 3/4 of the annulus. The left-
hand side corresponds to the narrow side of the annulus. The x -axis is measured in
pixels, with the first 65 pixels coming from the side view and the last 65 from the
frontal view.

In figure 6 we observe at initial times that the cross-section is full of fluid 2. We
see a large diffuse cloud of intermediate colour scale emerging at around t̂ = 20 s.
This effect comes from opening of the gate valve, which entrains fluid 1 into fluid
2 as can be observed in the images of figure 5(a) at the upstream (lower) position.
Other than this effect, we observe that the temporal frontier between fluids 1 and
2 remains horizontal with a very small azimuthal variation in these figures. In fact
the interface at the upper position appears flatter than that at the lower position,
since the entrainment effects of valve opening have dissipated further downstream.
By comparison with figure 6, the spatio-temporal plot for the unsteady displacement
(figure 7) shows strong azimuthal variations at both lower and upper positions. The
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Figure 8. Residence time distribution for the displacements of figures 5(a) and 5(b),
respectively. (a) μ�t = 0.95, σ�t/μ�t = 0.0026; (b) μ�t = 0.77, σ�t/μ�t = 0.06.

arrival times at the upper location are much shorter at the wide side than at the
narrow side. We again have some localized entrainment and mixing at the lower
position, just after the gate valve is opened.

3.2. Parametric results: Newtonian fluids

We now present the results of our different series of experiments, in particular focusing
on the question of whether the displacement may be considered steady or unsteady.
In order to make this type of classification, we need to have a meaningful measure of
the unsteadiness. Using the method explained in § 2.1 we compute the scaled residence
times �tj at each pixel value j , i.e. the time taken for the interface to pass from
upstream to downstream measurement locations, divided by the mean theoretical time
of travel as computed from the flow rate. Typical frequency distributions of residence
times are shown in figure 8 for the displacements of figures 5(a) and 5(b).

Evidently, the standard deviation of the residence time distribution σ�t is much
smaller for the displacement of figure 5(a) than for that of figure 5(b). Perhaps a less
obvious effect is that the mean residence time μ�t of the displacement of figure 5(a)
is significantly larger than that of figure 5(b), but is still less than unity. This effect is
due to dispersive fluid currents, which we shall discuss at length later.

For all steady displacements we have systematically found μ�t < 1, which discounts
the possibility of a random experimental error. We have carried out some concentric
test displacements in which glycerol displaces air, where dispersion is minimal and
still |μ�t − 1| ≈ 0.02, which is some measure of the imperfection of our apparatus.
There are also more random errors due to pump flow rate fluctuations, geometrical
imperfections, image processing, etc., which ensure that σ�t > 0. The size of these
errors is indicated by the value of σ�t/μ�t , when measured in steady displacements,
and is typically < 1 %.

For each experimental series we use σ�t/μ�t to compare between experiments, as
e and |b| = −b are varied. In figure 9(a–c) we present the values of σ�t/μ�t for each
of series 1–3, respectively. The experimental values are also used to construct the
shaded contour plots using two-dimensional linear interpolation and extrapolation.
Given that the matrix of experimental points in each series remains fairly sparse, we
interpret these contours mostly as a qualitative indication of the variation of σ�t/μ�t ,
except close to each data point. In particular, the extrapolation to |b| = 0, outside of
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the range of experimental |b|, appears non-physical in figure 9(c), but otherwise is
at least consistent with our physical intuition. By comparison between figure 9(a–c),
we observe that increasing the viscosity ratio has the effect of reducing σ�t/μ�t ,
i.e. stabilizing the flow and promoting steadiness. Increasingly steady displacements
are also found for less eccentric annuli and larger buoyancy |b|.

We have also classified each experimental displacement as either steady (squares)
or unsteady (triangles). Figure 9(d ) shows a typical variation of σ�t/μ�t as b is varied.
In a regime which is categorized as steady there is very little variation in σ�t/μ�t ,
about some small constant value. However, we consistently observe a rapid change
in σ�t/μ�t as |b| is decreased and the interface becomes unsteady. We classify by
identifying this rapid change in σ�t/μ�t with b at each fixed e. It is not possible to
specify an exact and universal transition threshold. This notion is anyway problematic
since some dispersion is always present and the amount is fixed. However, typically
we have recorded values σ�t/μ�t � 1% before the transition to unsteadiness, and
displacements become obviously unsteady for σ�t/μ�t in the range 3 %–5 %.

For series 1 (figure 9a) both fluids have the same viscosity and the displaced
fluid is less than 1 % lighter than the displacing fluid. Steady displacement was
only achievable in the concentric annulus or at small eccentricity with very low
flow rate. In series 2 (figure 9b), the displacing fluid is three times more viscous
than the displaced fluid and is 3.5 % denser than the displaced fluid. Although the
density difference was very small, steady displacement were achieved even at high
eccentricities with sufficiently low flow rates, |b| > 3. In series 3, with larger viscosity
ratio, steady displacements were found at smaller values of |b|. Over the ranges of fluid
properties and flow rates tested it appears that the buoyancy stress versus viscous stress
balance, captured in b, has a more significant stabilizing effect than viscosity ratio
alone.

3.3. Parametric results: non-Newtonian fluids

Three series of experiments were conducted with non-Newtonian fluids using Xanthan
gum and Carbopol 940 solutions. In the first series of non-Newtonian experiments
(figure 10a), a power law fluid displaced another power law fluid with lower
consistency. It should be noted that both fluids have the same power law index
so that the effects of shear thinning, as the flow rate is increased, are similar in
both fluids and the dimensionless ratio κ1/κ2 also remains invariant as the flow rate
changes. In figure 10(a) the contours show the same qualitative trends as for the
Newtonian displacements. A little buoyancy is required to make displacements steady
when there is some eccentricity.

In the second series of non-Newtonian displacement experiments, a viscoplastic
fluid (Carbopol) was displaced by a power law fluid (Xanthan). Again by matching
the power law indices, the effects of shear thinning in each fluid are broadly similar. In
this series of experiments, the fluids were of the same density (|b| =0), the displacing
fluid had a larger consistency value, but no yield stress. Steady displacement of
the Carbopol was never achieved even at e = 0. Long static channels of Carbopol
were observed on the narrow side of the annulus for e > 0.1. Due to the extensive
channelling it was not possible to quantify σ�t/μ�t .

In the last series of non-Newtonian experiments, by adding 5 % density difference
to the displacing fluid, steady displacements resulted in both eccentric and concentric
annuli (see figure 10b). Although the displacing fluid has a smaller consistency than
the displaced fluid, the density difference is sufficient to displace the yield stress fluid
from the narrow side of the annulus.
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4. Secondary flows and dispersion
It is immediately apparent when observing these displacement flows that a number

of secondary phenomena influence the flow. These fluids are miscible, but the time



Displacement flows in narrow vertical eccentric annuli 387

scale of the experiments (∼100 s) is very much shorter than that for molecular
diffusion. Thus, many of the observed effects are essentially dispersive and we use
this terminology to loosely describe these phenomena. Note, however, that we are
also parametrically far from the laminar Taylor dispersion regime, so that the effects
observed are local and not averaged by cross-gap dispersion in any way.

4.1. Radial effects: dispersion on the scale of the annular gap

To start with, if we consider the idealization of the narrow annular gap as a
plane channel, along which we are displacing vertically upwards, we expect to see a
displacement finger advance in the centre of the channel faster than the mean flow.
This type of symmetric duct displacement flow has been studied in some depth, in
both tubes and plane channels, experimentally by Petitjeans & Maxworthy (1996),
Lajeunesse et al. (1997, 1999, 2001), Lajeunesse (1999), Scoffoni, Lajeunesse & Homsy
(2001), Gabard (2001) and Gabard & Hulin (2003), and computationally by Chen &
Meiburg (1996), Rakotomalala, Salin & Watzky (1997), Yang & Yortsos (1997),
Allouche, Frigaard & Sona (2000), Frigaard, Scherzer & Sona (2001), Zhang &
Frigaard (2006), Goyal & Meiburg (2006, 2007), Schafroth, Goyal & Meiburg (2007)
and Vanaparthy & Meiburg (2008). Both Newtonian and non-Newtonian fluids have
been considered.

Since we deal primarily with ‘stable’ viscosity ratios, κ1 > κ2, as is common in the
industrial setting, the advancing displacement finger is expected to be locally stable,
i.e. this is not a viscous finger. This may be thought of as a form of dispersion in
which the dispersive effects are modulated by the positive viscosity ratio, κ1 > κ2 and
possibly by buoyancy b < 0, both of which act via modifying the velocity field of the
underlying Poiseuille flow, close to the interface. Amongst locally stable displacements,
dispersive effects are most prominent when the two fluids are identical. An example
of such a displacement is shown in figure 11, taken from a Newtonian experiment
in the larger aspect ratio annulus, δ = 0.084, which aids visualization. The fluids are
identical, except for the colouring of the displacing fluid. The annulus is eccentric,
e = 0.25, and therefore we observe the finger advancing first on the wide side of the
annulus (figure 11a). As the displacement advances, in figure 11(c) we first see the
front on the narrow side. Optically we do not see this as a finger since the displacing
fluid finger at other azimuthal positions partly masks the interface. At later times we
observe near-complete displacement with thinning residual wall layers.

In the case just examined, taking the analogy of the plane channel flow, we would
expect the tip of the displacement front to advance at 1.5 times the mean flow, as the
interface is simply advected by the plane Poiseuille velocity profile. For two identical
power law or Herschel–Bulkley fluids this same ratio may be easily calculated, and is
reduced due to both shear-thinning and yield stress effects. When the fluids are not
identical, some idea of the front speed at the channel centre can be gained from a
lubrication/thin-film style of model. Such models have been developed by Lajeunesse
et al. (1999) for the case of two Newtonian fluids and by Allouche et al. (2000) for
two Bingham fluids. These models give qualitative information concerning the effects
of rheological and buoyancy parameters, but do also overpredict the front speed as
they ignore the multi-dimensional nature of the flow at the front.

We have developed such a model for two Herschel–Bulkley fluids (i.e. including
Newtonian and power-law models), with a density difference, and have run various
exploratory computations. In general and as might be expected, for stable viscosity
ratios and moderate buoyancy number, the front velocity versus mean velocity ratios
lie between 1 and that of the identical fluid case. It is only for dimensionless parameters



388 S. Malekmohammadi and others

(a) (b) (c) (d)

Figure 11. Dispersive finger in the displacement flow of two identical Newtonian fluids:
κ̂1 = κ̂2 = 0.31 Pa.s: (a) t̂ = 0 s; (b) t̂ =4.1 s; (c) t̂ = 16 s; (d ) t̂ = 32 s. The annular eccentricity is
e = 0.25 and the aspect ratio δ = 0.084.

that are more extreme than those considered in our experiments that the centreline
front velocity approaches close to 1, with ratios in the range 1.15–1.5 being more
common. If this type of gap-scale dispersion was acting alone in an unmodified
fashion, we would be observing residence times smaller than those typically observed
for steady displacements. For example, in the context of the steady displacements
of series 1–3 (figure 9a–c), the mean scaled residence times are of the order of
0.95 ≈ 1/1.05.

4.2. Azimuthal effects: large-scale dispersion driven by circumferential flows

As discussed above, it is likely that gap-scale dispersion effects are modified by other
secondary flows present in the annulus. That such secondary flows exist has been
known for many years (see e.g. Tehrani et al. 1993; Bittleston et al. 2002; Pelipenko &
Frigaard 2004a). Indeed, in the case of a steady displacement in an eccentric annulus,
there can be no stable steady front without azimuthal secondary flows.

To illustrate the effects of these azimuthal currents we present a short series of
result from the large aspect ratio annulus, δ = 0.084 (in which dispersive effects are
amplified). For this series the displaced fluid 2 was a white corn syrup (Crown brand)
and the displacing fluid 1 was an undiluted gold corn syrup. The density difference
was varied by diluting the mixture by 8 % with a 20 % salt solution to fluid 2,
resulting in densities: ρ̂1 = 1398 kgm−3 and ρ̂2 = 1363 kgm−3. The viscosities were
κ̂1 = 6.24 Pa.s and κ̂2 = 0.76 Pa.s. In the three experiments shown, the flow rate Q̂ was
increased: Q̂= 3 × 10−6, 6 × 10−6, 12 × 10−6. The annulus had eccentricity, e =0.25.
This resulted in the following set of dimensionless numbers: κ1 = 1, κ2 = 0.122, and
−b =0.222, 0.111, 0.056, for the three increasing flow rates.

First we present results from the Hele-Shaw model of Pelipenko & Frigaard (2004b),
shown in figure 12(a–c). Each figure shows the interface and the moving frame stream
lines at a dimensionless time, t = 10, by which time the displacement is in steady state.
Each figure shows only half of the annulus, with the wide side at φ =0 and the
narrow side at φ =1. Moving left to right in this figure the flow rate increases, hence
|b| decreases. These are the streamlines relative to the mean velocity. The counter-
current secondary flow is evident: from wide to narrow side under the interface and
from narrow to wide side above the interface. To explore the effect of eccentricity,
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Figure 12. Moving frame streamlines and interface (heavy line) computed from the model
of Pelipenko & Frigaard (2004b), at time t = 10, for two Newtonian fluids with
κ1 = 1, κ2 = 0.122: (a–c) e = 0.25 with b = −0.222, −0.111, −0.056, respectively; (d–f ) e = 0.38
with b = −0.222, −0.111, −0.056, respectively; (g–i ) e = 0.5 with b = −0.222, −0.111, −0.056,
respectively. Contour spacing for the moving frame streamlines is at intervals 0.02 for (a–f ),
and at 0.04 for (g–i ). Direction of circulation as indicated in (a).

we also present in figure 12(d–i ), equivalent results at an eccentricity of 0.38 and 0.5,
with the same fixed values of b. The strength of the secondary flow increases in line
with the eccentricity, as suggested by the argument outlined above. In each figure the
direction of circulation of the fluids follows that indicated in figure 12(a).

Figure 13 shows the experimental results corresponding to figure 12(a–c). The
figure shows snapshots of the displacement front and below it are the results of an
edge detection algorithm, with five interfaces imaged at increasing distance along the
annulus. By comparison with figure 12(a–c), it is immediately apparent that there are
some significant differences. At this large viscosity ratio, the interfaces are stable and
the displacements all appear steady. As |b| decreases however, the effects on the model
results are minimal, but very noticeable in the experiment. Smaller |b| corresponds
to larger flow rate and the size of the secondary azimuthal flows scale in proportion
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Figure 13. Displacement of two Newtonian fluids with κ1 = 1, κ2 = 0.122, e = 0.25 (δ = 0.084):
(a) b = −0.222; (b) b = −0.111; (c) b = −0.056. Below each image are the results of
edge-detected interface at successive times along the annulus. The dimensionless distance
between successive interfaces is (a) 0.26, (b) 0.25, (c) 0.14; (dimensional length scale is 47.4mm).
Physical parameters given in the text.

to the flow rate. What appears to be happening is that dispersion on the gap-scale
promotes an axially advancing local finger towards the centre of the annular gap,
at each azimuthal position, i.e. simply because the velocity is larger in the centre of
the gap than at the walls. This finger must extend ahead of the mean position of
the interface, and is thus influenced by the secondary azimuthal flows that exist. The
displacing fluid is therefore swept azimuthally towards the wide side of the annulus,
advancing the interface on that side. At larger flow rates the secondary flows are
larger and the interface becomes increasingly elongated, although remaining steady.
It is hard to make direct comparisons with the model results in terms of interface
shape, due to optical distortion in processing the images. But we may approximately
compare the axial extension of the interface along the annulus. In the model this
is approximately 14 mm, at eccentricity of e = 0.25, which compares reasonably well
with the extension at the largest value of |b|, but is much smaller than the axial
extensions at smaller |b|. Clearly dispersion can have a significant effect.

4.3. Combined effects: spikes and tails

Although we have introduced dispersive effects above, by considering gap-scale and
large-scale effects separately, in practice the effects occur simultaneously. This leads to
a number of interesting flow observations. In the first place, the azimuthal secondary
flow causes a focusing of fluid on the wide side, where it is swept ahead of the
advancing front. As the flow across the gap is locally Poiseuille-like, the fluid that
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Figure 14. Spikes on the wide side in non-Newtonian displacements from series 4, at e = 0.5;

(a) Q̂ = 0.17 Lmin−1; (b) Q̂ = 0.34 Lmin−1; (c) Q̂ = 0.72 Lmin−1.

is focused on the wide side advances fastest in the centre of the gap in the form of
a protruding spike. An example of this is shown in figure 14 (see also figure 13).
These images are from series 4, at the highest eccentricity, e = 0.5, and show the
phenomenon at increasing flow rates, for figure 14(a–c) respectively. At the two lower
flow rates the displacement is steady but for the highest flow rate the displacement
is unsteady, due to a diminished |b|. The spike on the wide side occurs for most
displacements, regardless of rheology and whether steady or unsteady, with a varying
degree of visibility. When the flow is unsteady it is hard to distinguish the advancing
spike from the underlying unsteady interface. Even when steady the spike is observed
to advance at many times the mean flow velocity.

More interesting and varied is the behaviour on the narrow side of the annulus. If
we consider first a steady displacement, on the narrow side of the annulus we have
a direct competition between gap-scale dispersion and the annular secondary flows.
The former is advancing displacing (black) fluid ahead of the mean front position.
The secondary flows on the other hand move backwards relative to the mean flow,
hence stripping off displacing fluid from the sides of the advancing central finger
and advecting this fluid towards the wide side. The net effect of this competition is
a small spike, that sticks out ahead of the front (see figure 15). The spike is slightly
longer and more visible at higher flow rates. It was observed in almost all Newtonian
experiments, but not in non-Newtonian experiments (see e.g. figure 14). This may be
because the gap-scale dispersion is reduced by both shear-thinning and yield stress
effects, and hence the azimuthal currents dominate. We emphasize that this effect is
wholly repeatable for steady displacements, on the narrow side.

The occurrence of spike-like interfaces has been observed before, e.g. by Petitjeans &
Maxworthy (1996) and Scoffoni et al. (2001) in capillary tubes and by Lajeunesse
et al. (1997, 1999) and Lajeunesse (1999) in plane channel/Hele-Shaw geometries.
Petitjeans and Maxworthy relate the occurrence to a transition in the pattern of
streamlines, as suggested by Taylor (1961). Lajeunesse and coworkers have developed
a predictive methodology based on a lubrication displacement model. The regime in
which they delineate spike formation is that in which buoyancy is dominant. Our
case is different to both of these, in that the spikes appear to be governed by the
secondary azimuthal flow, and the base tendency for the fluid to move faster in the
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Figure 15. Spikes on the narrow side in Newtonian displacements from series 3, at e = 0.5;

(a) Q̂ = 0.17 L min−1; (b) Q̂ =0.34 L min−1; (c) Q̂ = 0.72 L min−1.

(a) (b)

Figure 16. Examples of interface shape at rear of an unsteady displacement on the narrow
side: (a) an example ‘V’ shape; (b) an example ‘U’ shape.

centre of the channel, rather than by buoyancy or by the recirculation dynamics on
the gap scale.

In the case of unsteady displacements the narrow side behaviour is quite different as
the mean interface position moves more slowly than the mean displacement speed. The
interface elongates and the rear of the interface, at the narrow gap, typically showed
either a ‘V’ or ‘U’ shape. The ‘V’ shape indicates that the interface is continually
elongating in the narrow gap, whereas the ‘U’ shape indicates that the narrowest part
is moving at a steady speed, over some range of azimuthal angles. These two features
are illustrated in figure 16.

In the lubrication model developed by Pelipenko & Frigaard (2004c), there are
parameter ranges for which the narrow side interface elongates progressively and
others for which a shock forms and steady propagation is found. These two
possibilities may correspond to the ‘V’ and ‘U’ shapes, but we have not carried out
any systematic study. Tehrani et al. (1993) report observing a variety of behaviours
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0.6 mm

Figure 17. Drainage wall layer observed during a Newtonian displacement.

on the narrow side of the annulus, including a form of ribbing instability. As the
interface elongates they identify a hydrostatic pressure imbalance as the driving force
for azimuthal flows that may destabilize the narrow side. We have not observed this
type of phenomenon in our experiments.

4.4. Quantifying dispersion

We have made some attempt to quantify dispersive effects, by comparing the spread
of saturation times at lower and upper positions. However, apart from indicating
that dispersion increases with both eccentricity and flow rate, these studies are largely
inconclusive. This partly because we are far from the Taylor-dispersion regime, so
that we don’t have a simplistic model to ‘fit’, but also because we do not have enough
experimental data to fit a new model.

4.5. Other interesting phenomena

In addition to the dispersion phenomena reported, several other effects were observed.
Firstly, in many situations we have observed a thin drainage layer adjacent to the
outer pipe wall, i.e. in the plane of the annular gap. Figure 17 shows a drainage
layer of 0.6–1 mm in thickness. It is likely that a similar layer exists at the inner wall,
but this is not visible. The drainage wall layer was most clearly visible for steady
displacements when Xanthan displaced Carbopol. In experiments in our larger aspect
ratio annulus, with lower viscosity pairs of Newtonian fluids, wall layers were observed
to destabilize, with aperiodic wave undulations of wavelength 8–20 mm.

In displacements of yield stress fluids (series 5) at larger eccentricities it was
common to find a channel of Carbopol left behind on the narrow side of the annulus.
This phenomenon was first highlighted by McLean, Manry & Whitaker (1966) in the
cementing context as a potential process problem. An example is shown in figure 18,
taken form series 5. It is worth noting that in this flow, as the displacement is
unsteady, azimuthal secondary flows are minimal and also the displaced fluid is static.
Thus, dispersive currents are greatly reduced and we observe a very clean and sharp
interface.

5. Discussion and conclusions
This paper has presented the results of 6 series of displacement flow experiments

in narrow eccentric annuli. Each series consisted of displacements with the same fluid
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Figure 18. Static channel on the narrow side for an experiment in series 5: e = 0.5,

Q̂ = 0.34 Lmin−1. Images are shown at: 10, 45 and 75 s after opening of the gate valve.

pair, repeated at different eccentricities and different flow rates. The underlying results
largely confirm the qualitative picture that underpins field-based ‘rules of thumb’ for
the primary cementing of vertical wells (e.g. Couturier et al. 1990; Nelson & Guillot
2006). This same scenario has also been extensively studied in the context of a
Hele-Shaw style displacement model by Bittleston et al. (2002) and Pelipenko &
Frigaard (2004a,b,c). The overall trends observed are that (i) it is possible to have
steady travelling wave displacement fronts in eccentric annular geometries, as well
as unsteady displacements for which the interface elongates along the annulus; (ii)
steadiness is promoted by a positive ratio of viscosity and density (i.e. displacing fluid
more viscous and heavier), and by a smaller eccentricity.

The above falls into the realm of existing knowledge. More interesting and novel
has been the observation of various secondary flow structures, that modify the
displacement via dispersion. Two underlying processes combine to drive these flows.
First, on the scale of the annular gap a Poiseuille-like velocity profile across the gap
causes displacing fluid to advance in the centre faster than the mean position of
the ‘gap-averaged’ interface. Secondly, secondary azimuthal flows produce a counter-
current shear across the interface, in the case of a steady displacement. The size
of the azimuthal secondary flow increases with the eccentricity. The secondary flow
transports the advancing fingers of displacing fluid around to the wide side, where
they frequently form a long finger/spike advancing locally ahead of the mean interface
speed. The advance of this spike is due to the two dispersive tendencies acting together.
A smaller spike may also sometimes form on the narrow side of the annulus, but does
not grow in time. Here the azimuthal secondary flow opposes the gap-scale dispersive
effects. Both effects are amplified by the flow rate.

We have characterized our experiments as either steady or unsteady by using the
ratio of standard deviation to mean of the residence time distribution. We have also
used other measurements from the local saturation curves to indicate how dispersive
effects vary azimuthally. In the parameter regime where we operate we are far from a
diffusive representation of dispersion (i.e. Taylor dispersion), but due to the geometric
complexity of the flows it is hard to provide a simple characterization of advective
effects. These measurements therefore give mostly qualitative information, principally
confirming that dispersion manifests predominantly on the wide side of the annulus,
in the presence of eccentricity.

In our Newtonian experiments, we note that increasing the flow rate has the
effect of reducing |b|, which promotes unsteadiness, and also increases the amount of
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azimuthal dispersion. Both destabilizing effects thus act together. We suspect therefore,
that an unsteady displacement will elongate faster experimentally than predicted by
the Hele-Shaw type of model (which has no gap-scale dispersion). On the other hand,
the driving force for the azimuthal secondary currents is the mismatch between the
far-field gap-averaged annular Poiseuille flow (which moves faster on the wide side),
and a steadily propagating interface. Once the interface is not propagating steadily,
we may expect that the azimuthal current decays as the interface elongates.

This leads naturally to the observation that in an eccentric annulus, even every
steady interface is unsteady. The azimuthal secondary flow continues to pump
displacing fluid towards the wide side, which then accelerates ahead of the front
in the form of a spike. Whilst this can not be disputed we note that the spike is
a local phenomenon and would not be present if there was no dispersion on the
gap-scale. The absence of gap-scale dispersion leads to exactly the Hele-Shaw type of
displacement flow. Therefore, we see that gap-scale dispersion is strongly modified by
the azimuthal secondary flow. The reverse coupling is however not evident. Over wide
ranges of flow parameters we have computed residence time distributions that have
relatively constant σ�t/μ�t � 1, over a broad range of parameters, only increasing
sharply at some threshold value (see e.g. figure 9d ). This suggests that the net
result of the dispersion does not change the dynamics of the underlying large-scale
Hele-Shaw flow. The failure of local ‘interfacial’ effects to modify the global flow
is relatively commonplace in Hele-Shaw (and Darcy) flows (see e.g. Zimmerman &
Homsy 1991). On the other hand there is some uncertainty about this conclusion since
our experimental time scale is much shorter than that in the industrial application.

Whilst we suspect that the experimental displacement flows will be more unsteady
than the computed Hele-Shaw displacements, with the same parameters, this is not
straightforward to test. Experimentally there are numerous restrictions on the set
of feasible experimental parameters. From the modelling perspective, it is time
consuming and imprecise to determine a stability frontier from repetitive time-
dependent simulations. Not least, this is because as the frontier is approached,
growth rates approach zero, requiring very long times to infer stability or instability
from simulation results. In Pelipenko & Frigaard (2004c) a semi-analytical approach
is followed, in which a lubrication-style model is developed from the Hele-Shaw
displacement model. This approach assumes an elongated interface has already
developed and questions whether it would continue to grow. This gives semi-analytical
bounds on sufficient conditions to be satisfied for the interface to grow indefinitely.
In figure 19 we compare the predictions from this model with the experimental
results. The regions that are predicted to be unsteady by the model in Pelipenko &
Frigaard (2004c) are found to be unsteady for our experiments, but the prediction
is clearly conservative with respect to the experiments, so caution must be exercised.
Part of this conservatism stems from the lubrication model, i.e. this model predicts
parameter regimes of unsteady displacements (which is where the model assumptions
are self-consistent), but makes no prediction of the interface behaviour outside of
these regimes.

In conclusion, the underlying dynamics of the Hele-Shaw style of model from
Bittleston et al. (2002) do appear relevant to the experimental displacements. However,
the experiments also expose a number of interesting dispersive effects that are simply
not accounted for by the Hele-Shaw style of model. Our future plans in this domain
include the attempt to include gap-scale dispersion within our present Hele-Shaw
model, and then study its effects on the displacement. This will allow a more detailed
comparison with the results presented here.
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Figure 19. Comparison of the classified steady and unsteady experiments with the lubrication
model predictions from Pelipenko & Frigaard (2004c): (a) series 1; (b) series 2; (c) series 3;
(d ) series 4.
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avec debit axial: cas dun fluide pseudoplastique. Intl J. Heat Mass Transfer 30, 639–647.

Nouri, J. M., Umur, H. & Whitelaw, J. H. 1993 Flow of Newtonian and non-Newtonian fluids in
concentric and eccentric annuli. J. Fluid Mech. 253, 617–641.

Nouri, J. M. & Whitelaw, J. H. 1994 Flow of Newtonian and non-Newtonian fluids in a concentric
annulus with rotation of the inner cylinder. J. Fluids Engng 116, 821–827.

Nouri, J. M. & Whitelaw, J. H. 1997 Flow of Newtonian and non-Newtonian fluids in an eccentric
annulus with rotation of the inner cylinder. Intl J. Heat Fluid Flow 18, 236–246.



398 S. Malekmohammadi and others

Pelipenko, S. & Frigaard, I. A. 2004a On steady state displacements in primary cementing of an
oil well. J. Engng Math. 48 (1), 1–26.

Pelipenko, S. & Frigaard, I. A. 2004b Two-dimensional computational simulation of eccentric
annular cementing displacements. IMA J. Appl. Math. 64 (6), 557–583.

Pelipenko, S. & Frigaard, I. A. 2004c Visco-plastic fluid displacements in near-vertical
narrow eccentric annuli: prediction of travelling wave solutions and interfacial instability.
J. Fluid Mech. 520, 343–377.

Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments.
J. Fluid Mech. 326, 37–56.

Rakotomalala, N., Salin, D. & Watzky, P. 1997 Miscible displacement between two parallel
plates: BGK lattice gas simulations. J. Fluid Mech. 338, 277–297.

Schafroth, D., Goyal, N. & Meiburg, E. 2007 Miscible displacements in Hele-Shaw cells:
nonmonotonic viscosity profiles. Eur. Phys. J. E 26, 444–453.

Scoffoni, J., Lajeunesse, E. & Homsy, G. M. 2001 Interfacial instabilities during displacements of
two miscible fluids in a vertical pipe. Phys. Fluids 13 (3), 553–556.

Taylor, G. I. 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161.

Tehrani, A., Bittleston, S. H. & Long, P. G. J. 1993 Flow instabilities during annular displacement
of one non-Newtonian fluid by another. Exp. Fluids 14, 246–256.

Tehrani, A., Ferguson, J. & Bittleston, S. H. 1992 Laminar displacement in annuli: a combined
theoretical and experimental study. Society of Petroleum Engineers, paper number SPE 24569.

Vanaparthy, S. H. & Meiburg, E. 2008 Variable density and viscosity, miscible displacements in
capillary tubes. Eur. Phys. J. E 27, 268–289.

Vefring, E. H., Bjorkevoll, K. S., Hansen, S. A., Sterri, N., Saevareid, O., Aas, B. & Merlo, A.

1997 Optimization of displacement efficiency during primary cementing. Society of Petroleum
Engineers, paper number SPE 39009.

Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of
large aspect ratio. Phys. Fluids 9 (2), 286–298.

Zhang, J. & Frigaard, I. A. 2006 Dispersion effects in the miscible displacement of two fluids in
a duct of large aspect ratio. J. Fluid Mech. 549, 225–251.

Zimmerman, W. B. & Homsy, G. M. 1991 Nonlinear viscous fingering in miscible displacements
with anisotropic dispersion. Phys. Fluids 3, 1859–1872.


